Исследователи из Университета Аалто (Финляндия) преуспели в эксперименте очень необычной природы.
Вакуум не пуст, в нём постоянно возникают и исчезают виртуальные частицы. Обычно они так и остаются виртуальными: обязаны либо поглотиться какой-либо частицей, либо распасться, причём столь быстро, что это, казалось бы, почти никогда напрямую не влияет на реальные частицы. Масса и энергия таких виртуальных частиц не ограничены «сверху», хотя это и не нарушает закон сохранения энергии: время существования виртуальных частиц тем меньше, чем больше их энергия. В связи с этим до недавних пор многие были склонны считать виртуальные частицы существующими скорее в качестве математической абстракции, нежели чего-то настоящего.
Финны провели эксперимент с движущимся зеркалом, и он в очередной раз показал, что на практике эти частицы можно превратить в реальные. В опыте использовался массив из 250 СКВИДов, сверхпроводящих квантовых интерферометров, лежащих в основе МРТ (что применяется для исследования головного мозга).
Изменяя магнитное поле в таком устройстве, можно регулировать в нём скорость света (конечно, не превышая 299 792,458 км/с). С точки зрения электромагнитного поля вакуума, излучение, отражаемое такими СКВИДами, воспринимает их в качестве движущегося «зеркала». «Если действовать быстро, можно не дать [виртуальным] частицам рекомбинироваться — и тогда они трансформируются в частицы реальные, которые можно зарегистрировать», — замечает доктор Сорин Параоану (Sorin Paraoanu), один из авторов рассматриваемой работы.
В общем, при быстром изменении скорости распространения света в массиве СКВИДов физикам удалось извлечь из вакуумного квантового шума фотоны микроволн. Теоретически наиболее массивные частицы получатся, если «зеркало» двигать с колоссальными ускорениями, но до такой экспериментальной техники нам пока далеко. Поэтому на сей раз были «материализованы» фотоны «всего лишь» микроволнового излучения.
В будущем авторы работы мечтают создать при помощи таких экспериментальных устройств искусственный горизонт событий чёрной дыры и наблюдать исходящее от него легендарное излучение Хокинга.
Если это удастся, такие эксперименты могут иметь краеугольное значение как для физики, так и для космологии.
Отчёт об исследовании опубликован в журнале Proceedings of the National Academy of Sciences.
Подготовлено по материалам Университета Аалто.